Bài Tập Chứng Minh Đẳng Thức Lượng Giác Lớp 10 Có Đáp Án

Mời các bạn học sinh cùng tham khảo tư liệu tiếp sau đây với 226 bài tập Lượng giác lớp 10 có giải thuật nhằm mục tiêu góp các em học sinh trường đoản cú học tập, tự ôn thi kết quả, chuẩn bị tốt nhất đến kỳ thi sắp tới.

Bạn đang xem: Bài tập chứng minh đẳng thức lượng giác lớp 10 có đáp án

Đồng thời đó cũng là tài liệu xem thêm hữu dụng dành riêng cho những thầy thầy giáo vào câu hỏi biên soạn đề thi và giáo án. Mời chúng ta cùng tham khảo.


*

MATHđất nước hình chữ S.COM CHÖÔNG 1: COÂNG THÖÙC LÖÔÏNG GIAÙCI. Ñònh nghóa Treân maët phaúng Oxy cho ñöôøng troøn löôïng giaùc taâm O baùn kính R=1 vaø ñieåm M treân ñöôøng troøn löôïng giaùc maø sñ AM = β vôùi 0 ≤ β ≤ 2π Ñaët α = β + k2π,k ∈ Z Ta ñònh nghóa: sin α = OK cos α = OH sin α tgα = vôùi cos α ≠ 0 cos α cos α cot gα = vôùi sin α ≠ 0 sin αII. Baûng giaù trò löôïng giaùc cuûa moät soá cung (hay goùc) ñaëc bieät Goùc α ( ) 0 0o π ( ) 30o π ( ) 45o π ( ) 60o π ( ) 90oGiaù trò 6 4 3 2sin α 0 1 2 3 1 2 2 2cos α 1 3 2 1 0 2 2 2tgα 0 3 1 3 || 3cot gα || 3 1 3 0 3III. Heä thöùc cô baûn sin 2 α + cos2 α = 1 1 π 1 + tg2α = vôùi α ≠ + kπ ( k ∈ Z ) cos α 2 2 1 t + cot g2 = vôùi α ≠ kπ ( k ∈ Z ) sin 2 αIV. Cung lieân keát (Caùch nhôù: cos ñoái, sin buø, tang không đúng π ; phuï cheùo) a. Ñoái nhau: α vaø −α sin ( −α ) = − sin α cos ( −α ) = cos α tg ( −α ) = −tg ( α ) cot g ( −α ) = − cot g ( α ) www.MATHnước ta.com MATHVN.COMb. Buø nhau: α vaø π − αsin ( π − α ) = sin αcos ( π − α ) = − cos αtg ( π − α ) = − tgαcot g ( π − α ) = − cot gαc. Sai nhau π : α vaø π + αsin ( π + α ) = − sin αcos ( π + α ) = −cosαtg ( π + α ) = t gαcot g ( π + α ) = cot gα πd. Phuï nhau: α vaø −α 2 ⎛π ⎞sin ⎜ − α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞cos ⎜ − α ⎟ = sin α ⎝2 ⎠ ⎛π ⎞tg ⎜ − α ⎟ = cot gα ⎝2 ⎠ ⎛π ⎞cot g ⎜ − α ⎟ = tgα ⎝2 ⎠ π πe.Sai nhau : α vaø + α 2 2 ⎛π ⎞sin ⎜ + α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞cos ⎜ + α ⎟ = − sin α ⎝2 ⎠ ⎛π ⎞tg ⎜ + α ⎟ = − cot gα ⎝2 ⎠ ⎛π ⎞cot g ⎜ + α ⎟ = − tgα ⎝2 ⎠ www.MATHđất nước hình chữ S.com MATHVN.COM f. sin ( x + kπ ) = ( −1) sin x, k ∈ Z k cos ( x + kπ ) = ( −1) cos x, k ∈ Z k tg ( x + kπ ) = tgx, k ∈ Z cot g ( x + kπ ) = cot gxV. Coâng thöùc coäng sin ( a ± b ) = sin a cos b ± sin b cosa cos ( a ± b ) = cosa cos b ∓ sin asin b tga ± tgb tg ( a ± b ) = 1 ∓ tgatgbVI. Coâng thöùc nhaân ñoâi sin 2a = 2sin a cosa cos2a = cos2 a − sin 2 a = 1 − 2sin 2 a = 2 cos2 a − 1 2tga tg2a = 1 − tg2a cot g2a − 1 cot g2a = 2 cot gaVII. Coâng thöùc nhaân ba: sin3a = 3sin a − 4sin3 a cos3a = 4 cos3 a − 3cosaVIII. Coâng thöùc haï baäc: 1 sin 2 a = (1 − cos2a ) 2 1 cos2 a = (1 + cos2a ) 2 1 − cos2a tg2a = 1 + cos2aIX. Coâng thöùc phân chia ñoâi a Ñaët t = tg (vôùi a ≠ π + k2 π ) 2 www.MATHđất nước hình chữ S.com MATHđất nước hình chữ S.COM 2t sin a = 1 + t2 1 − t2 cosa = 1 + t2 2t tga = 1 − t2X. Coâng thöùc bieán ñoåi toång thaønh tích a+b a−b cosa + cos b = 2 cos cos 2 2 a+b a−b cosa − cos b = −2sin sin 2 2 a+b a−b sin a + sin b = 2 cos sin 2 2 a+ b a−b sin a − sin b = 2 cos sin 2 2 sin ( a ± b ) tga ± tgb = cosa cos b sin ( b ± a ) cot ga ± cot gb = sin a.sin bXI. Coâng thöùc bieån ñoåi tích thaønh toång 1 cosa.cos b = ⎡ cos ( a + b ) + cos ( a − b ) ⎤⎦ 2⎣ −1 sin a.sin b = ⎡ cos ( a + b ) − cos ( a − b ) ⎤⎦ 2 ⎣ 1 sin a.cos b = ⎡⎣sin ( a + b ) + sin ( a − b ) ⎤⎦ 2 sin 4 a + cos4 a − 1 2Baøi 1: Chöùng minh = sin 6 a + cos6 a − 1 3 Ta coù: sin 4 a + cos4 a − 1 = ( sin 2 a + cos2 a ) − 2sin 2 a cos2 a − 1 = −2sin 2 a cos2 a 2 Vaø: sin 6 a + cos6 a − 1 = ( sin 2 a + cos2 a )( sin 4 a − sin 2 a cos2 a + cos4 a ) − 1 = sin 4 a + cos4 a − sin 2 a cos2 a − 1 = (1 − 2sin 2 a cos2 a ) − sin 2 a cos2 a − 1 = −3sin 2 a cos2 a www.MATHVN.com MATHViệt Nam.COM sin 4 a + cos4 a − 1 −2sin 2 a cos2 a 2 Do ñoù: = = sin 6 a + cos6 a − 1 −3sin 2 a cos2 a 3 1 + cos x ⎡ (1 − cos x ) ⎤ 2Baøi 2: Ruùt goïn bieåu thöùc A = = ⎢1 + ⎥ sin x ⎢⎣ sin 2 x ⎥⎦ 1 πTính giaù trò A neáu cos x = − vaø 0 2 3 Vaäy sin x = 2 2 4 4 3 Do ñoù A = = = sin x 3 3Baøi 3: Chöùng minc caùc bieåu thöùc sau ñaây khoâng phuï thuoäc x: a. A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin 2 x 2 cot gx + 1 b. B = + tgx − 1 cot gx − 1 a.

Xem thêm: Hỏi Đáp Về Luật An Ninh Mạng Chính Thức Có Hiệu Lực Vào Thời Gian Nào

Ta coù: A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin2 x ⇔ A = 2 cos4 x − (1 − cos2 x ) + (1 − cos2 x ) cos2 x + 3 (1 − cos2 x ) 2 ⇔ A = 2 cos4 x − (1 − 2 cos2 x + cos4 x ) + cos2 x − cos4 x + 3 − 3cos2 x ⇔ A = 2 (khoâng phuï thuoäc x) b. Vôùi ñieàu kieän sin x.cosx ≠ 0,tgx ≠ 1 2 cot gx + 1 Ta coù: B = + tgx − 1 cot gx − 1 www.MATHtoàn nước.com MATHVN.COM 1 +1 2 tgx 2 1 + tgx ⇔ B= + = + tgx − 1 1 − 1 tgx − 1 1 − tgx tgx 2 − (1 − tgx ) 1 − tgx ⇔ B= = = −1 (khoâng phuï thuoäc vaøo x) tgx − 1 tgx − 1Baøi 4: Chöùng minch 1 + cosa ⎡ (1 − cosa ) ⎤ cos2 b − sin 2 c 2 ⎢1 − 2 ⎥+ 2 2 − cot g2 b cot g2 c = cot ga − 1 2sin a ⎢ sin a ⎥ sin bsin c ⎣ ⎦ Ta coù: cos2 b − sin 2 c * − cot g2 b.cot g2 c sin b.sin c 2 2 cotg2 b 1 = − 2 − cot g2 b cot g2 c sin c sin b 2 ( ) ( ) = cot g2 b 1 + cot g2 c − 1 + cot g2 b − cot g 2 b cot g2 c = −1 (1) 1 + cosa ⎡ (1 − cosa ) ⎤ 2 * ⎢1 − ⎥ 2sin a ⎢ sin 2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ (1 − cosa ) ⎤ 2 = ⎢1 − ⎥ 2sin a ⎢ 1 − cos2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ 1 − cosa ⎤ = 1− 2sin a ⎢⎣ 1 + cosa ⎥⎦ 1 + cosa 2 cosa = . = cot ga (2) 2sin a 1 + cosa Laáy (1) + (2) ta ñöôïc ñieàu phaûi chöùng minc ngừng.Baøi 5: Cho ΔABC tuøy yù vôùi cha goùc ñeàu laø nhoïn. Tìm giaù trò nhoû nhaát cuûa Phường = tgA.tgB.tgC Ta coù: A + B = π − C Neân: tg ( A + B) = − tgC tgA + tgB ⇔ = − tgC 1 − tgA.tgB ⇔ tgA + tgB = −tgC + tgA.tgB.tgC Vaäy: P = tgA.tgB.tgC = tgA + tgB + tgC www.MATHcả nước.com MATHtoàn quốc.COM AÙp duïng baát ñaúng thöùc Cauchy cho bố soá döông tgA,tgB,tgC ta ñöôïc tgA + tgB + tgC ≥ 3 3 tgA.tgB.tgC ⇔ P ≥ 33 P.. ⇔ 3 P2 ≥ 3 ⇔P≥3 3 ⎧ tgA = tgB = tgC ⎪ π Daáu “=” xaûy ra ⇔ ⎨ π ⇔ A = B=C= ⎪⎩ 0 y " = − (1 − t ) + 4t 3 2 Ta coù : y " = 0 Ù (1 − t ) = 8t 3 3 ⇔ 1 − t = 2t 1 ⇔t= 3 1 ⎛1⎞ Ta coù y(1) = 1; y(-1) = 3; y ⎜ ⎟ = 27 ⎝ 3⎠ 1 Do ñoù : Max y = 3 vaø Miny = x∈ x∈ 27 b/ Do ñieàu kieän : sin x ≥ 0 vaø cos x ≥ 0 neân mieàn xaùc ñònh ⎡ π ⎤ D = ⎢ k2π, + k2π ⎥ vôùi k ∈ ⎣ 2 ⎦ Ñaët t = cos x vôùi 0 ≤ t ≤ 1 thì t = cos x = 1 − sin x 4 2 2 Neân sin x = 1 − t4 Vaäy y = 1 − t − t treân D " = < 0,1> 8 4 −t 3 Thì y " = − 1 MATHViệt Nam.COMBaøi 7: Cho haøm soá y = sin4 x + cos4 x − 2m sin x cos xTìm giaù trò m ñeå y xaùc ñònh vôùi moïi x Xeùt f (x) = sin 4 x + cos4 x − 2m sin x cos x f ( x ) = ( sin 2 x + cos2 x ) − m sin 2x − 2 sin 2 x cos2 x 2 1 f ( x) = 1 − sin2 2x − m sin 2x 2 Ñaët : t = sin 2x vôùi t ∈ < −1, 1> y xaùc ñònh ∀x ⇔ f ( x ) ≥ 0∀x ∈ R 1 2 ⇔ 1− t − mt ≥ 0 ∀t ∈ < −1,1> 2 ⇔ g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ < −1,1> Do Δ " = mét vuông + 2 > 0 ∀m neân g(t) coù 2 nghieäm phaân bieät t1, t2 Luùc ñoù t t1 t2 g(t) + 0 - 0 Do ñoù : yeâu caàu baøi toaùn ⇔ t1 ≤ −1 MATHcả nước.COM Maët khaùc : sin 4 α + cos4 α = ( sin 2 α + cos2 α ) − 2 sin 2 α cos2 α 2 = 1 − 2sin2 α cos2 α 1 = 1 − sin2 2α 2 π 7π 3π 5π Do ñoù : A = sin4 + sin4 + sin4 + sin4 16 16 16 16 ⎛ π π ⎞ ⎛ 4 3π 3π ⎞ = ⎜ sin 4 + cos4 ⎟ + ⎜ sin + cos4 ⎟ ⎝ 16 16 ⎠ ⎝ 16 16 ⎠ ⎛ 1 π⎞ ⎛ 1 3π ⎞ = ⎜ 1 − sin 2 ⎟ + ⎜ 1 − sin 2 ⎟ ⎝ 2 8⎠ ⎝ 2 8 ⎠ 1⎛ π 3π ⎞ = 2 − ⎜ sin 2 + sin 2 ⎟ 2⎝ 8 8 ⎠ 1⎛ π π⎞ ⎛ 3π π⎞ = 2 − ⎜ sin 2 + cos2 ⎟ ⎜ vị sin = cos ⎟ 2⎝ 8 8⎠ ⎝ 8 8⎠ 1 3 = 2− = 2 2Baøi 9 : Chöùng minch : 16 sin 10o .sin 30o .sin 50o .sin 70o = 1 A cos 10o 1 Ta coù : A = = (16sin10ocos10o)sin30o.sin50o.sin70o cos 10 o cos 10 o 1 ⎛1⎞ o ( ⇔ A= 8 sin 20o ) ⎜ ⎟ cos 40o . cos 20o cos 10 ⎝2⎠ 1 o ( ⇔ A= 4 sin 200 cos 20o ) . cos 40o cos10 1 o ( ⇔ A= 2 sin 40o ) cos 40o cos10 1 cos 10o ⇔ A= sin 80 o = =1 cos10o cos 10o A B B C C ABaøi 10 : Cho ΔABC . Chöùng minc : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A+B π C Ta coù : = − 2 2 2 A+B C Vaäy : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg .tg tg 2 2 2 ⎡ A B ⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 www.MATHnước ta.com MATHcả nước.COM A C B C A B ⇔ tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 π π π πBaøi 11 : Chöùng minh : 8 + 4tg + 2tg + tg = cot g ( *) 8 16 32 32 π π π π Ta coù : (*) ⇔ 8 = cot g − tg − 2tg − 4tg 32 32 16 8 cos a sin a cos a − sin a 2 2 Maø : cot ga − tga = − = sin a cos a sin a cos a cos 2a = = 2 cot g2a 1 sin 2a 2 Do ñoù : ⎡ π π⎤ π π (*) ⇔ ⎢ cot g − tg ⎥ − 2tg − 4tg = 8 ⎣ 32 32 ⎦ 16 8 ⎡ π π⎤ π ⇔ ⎢ 2 cot g − 2tg ⎥ − 4tg = 8 ⎣ 16 16 ⎦ 8 π π ⇔ 4 cot g − 4tg = 8 8 8 π ⇔ 8 cot g = 8 (hieån nhieân ñuùng) 4Baøi :12 : Chöùng minc : ⎛ 2π ⎞ ⎛ 2π ⎞ 3 a/ cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ = ⎝ 3 ⎠ ⎝ 3 ⎠ 2 1 1 1 1 b/ + + + = cot gx − cot g16x sin 2x sin 4x sin 8x sin16x ⎛ 2π ⎞ ⎛ 2π ⎞ a/ Ta coù : cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 1 1⎡ ⎛ 4π ⎞ ⎤ 1 ⎡ ⎛ 4π ⎞⎤ = (1 + cos 2x ) + ⎢1 + cos ⎜ 2x + ⎟ ⎥ + ⎢1 + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠⎦ 2 ⎣ ⎝ 3 ⎠⎦ 3 1⎡ ⎛ 4π ⎞ ⎛ 4π ⎞⎤ = + ⎢ cos 2x + cos ⎜ 2x + ⎟ + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠ ⎝ 3 ⎠⎦ 3 1⎡ 4π ⎤ = + ⎢ cos 2x + 2 cos 2x cos ⎥ 2 2⎣ 3⎦ 3 1⎡ ⎛ 1 ⎞⎤ = + ⎢ cos 2x + 2 cos 2x ⎜ − ⎟ ⎥ 2 2⎣ ⎝ 2 ⎠⎦ 3 = 2 cos a cos b sin b cos a − sin a cos b b/ Ta coù : cot ga − cot gb = − = sin a sin b sin a sin b www.MATHtoàn nước.com MATHcả nước.COM sin ( b − a ) = sin a sin b sin ( 2x − x ) 1 Do ñoù : cot gx − cot g2x = = (1 ) sin x sin 2x sin 2x sin ( 4x − 2x ) 1 cot g2x − cot g4x = = ( 2) sin 2x sin 4x sin 4x sin ( 8x − 4x ) 1 cot g4x − cot g8x = = ( 3) sin 4x sin 8x sin 8x sin (16x − 8x ) 1 cot g8x − cot g16x = = (4) sin16x sin 8x sin16x Laáy (1) + (2) + (3) + (4) ta ñöôïc 1 1 1 1 cot gx − cot g16x = + + + sin 2x sin 4x sin 8x sin16xBaøi 13 : Chöùng minh : 8sin3 180 + 8sin2 180 = 1 Ta coù: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (do 0 MATHVN.COM 1 = ( sin4 x + cos4 x ) − sin2 2x 4 ⎛3 1 ⎞ 1 = ⎜ + cos 4x ⎟ − (1 − cos 4x ) ( vị keát quaû caâu a ) ⎝4 4 ⎠ 8 3 5 = cos 4x + 8 8 c/ Ta coù : sin 8 x + cos8 x = ( sin 4 x + cos4 x ) − 2 sin 4 x cos4 x 2 1 2 ( 3 + cos 4x ) − sin4 2x 2 = 16 16 2 1 1 ⎡1 ⎤ = 16 ( 9 + 6 cos 4x + cos 4x ) − 8 ⎢⎣ 2 (1 − cos 4x )⎥⎦ 2 9 3 1 1 = + cos 4x + (1 + cos 8x ) − (1 − 2 cos 4x + cos2 4x ) 16 8 32 32 9 3 1 1 1 = + cos 4x + cos 8x + cos 4x − (1 + cos 8x ) 16 8 32 16 64 35 7 1 = + cos 4x + cos 8x 64 16 64Baøi 15 : Chöùng minc : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x Caùch 1: Ta coù : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x = ( 3sin x − 4 sin 3 x ) sin 3 x + ( 4 cos3 x − 3 cos x ) cos3 x = 3sin4 x − 4 sin6 x + 4 cos6 x − 3cos4 x = 3 ( sin 4 x − cos4 x ) − 4 ( sin 6 x − cos6 x ) = 3 ( sin 2 x − cos2 x )( sin 2 x + cos2 x ) −4 ( sin 2 x − cos2 x )( sin 4 x + sin 2 x cos2 x + cos4 x ) = −3 cos 2x + 4 cos 2x ⎡⎣1 − sin 2 x cos2 x ⎤⎦ ⎛ 1 ⎞ = −3 cos 2x + 4 cos 2x ⎜ 1 − sin 2 2x ⎟ ⎝ 4 ⎠ ⎡ ⎛ 1 ⎞⎤ = cos 2x ⎢ −3 + 4 ⎜ 1 − sin 2 2x ⎟ ⎥ ⎣ ⎝ 4 ⎠⎦ = cos 2x (1 − sin 2 2x ) = cos3 2x Caùch 2 : Ta coù : sin 3x.sin3 x + cos 3x.cos3 x ⎛ 3sin x − sin 3x ⎞ ⎛ 3 cos x + cos 3x ⎞ = sin 3x ⎜ ⎟ + cos 3x ⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ 3 1 = ( sin 3x sin x + cos 3x cos x ) + ( cos2 3x − sin2 3x ) 4 4 www.MATHtoàn nước.com MATHđất nước hình chữ S.COM 3 1 = cos ( 3x − x ) + cos 6x 4 4 1 = ( 3cos 2x + cos 3.2x ) 4 1 = ( 3cos 2x + 4 cos3 2x − 3cos 2x ) ( boû doøng naøy cuõng ñöôïc) 4 = cos3 2x 3 +1Baøi 16 : Chöùng minch : cos12o + cos18o − 4 cos15o.cos 21o cos 24 o = − 2 Ta coù : cos12 + cos18 − 4 cos15 ( cos 21 cos 24 ) o o o o o = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) 3 +1 =− 2Baøi 17 : Tính P = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta coù : Phường. = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1 ⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) − ⎜ − + cos 20o ⎟ 2 2⎝ 2 ⎠ 1 1 P = 1 − ( cos120o cos 20o ) + − cos 20o 4 2 5 1 1 5 P. = + cos 20o − cos 20o = 4 2 2 4 8 3Baøi 18 : Chöùng minc : tg30o + tg40o + tg50o + tg60o = cos 20o 3 sin ( a + b ) AÙp duïng : tga + tgb = cos a cos b Ta coù : ( tg50 + tg40 ) + ( tg30o + tg60o ) o o sin 90o sin 90o = + cos 50o cos 40o cos 30o cos 60o 1 1 = + sin 40 cos 40 o o 1 cos 30o 2 2 2 = + sin 80o cos 30o ⎛ 1 1 ⎞ = 2⎜ + ⎟ ⎝ cos10 cos 30o ⎠ o www.MATHtoàn quốc.com MATHđất nước hình chữ S.COM ⎛ cos 30o + cos10o ⎞ = 2⎜ o ⎟ ⎝ cos10 cos 30 ⎠ o cos 20p cos10o =4 cos10o cos 30o 8 3 = cos 20o 3Baøi 19 : Cho ΔABC , Chöùng minh : A B C a/ sin A + sin B + sin C = 4 cos cos cos 2 2 2 A B C b/ socA + cos B + cos C = 1 + 4 sin sin sin 2 2 2 c/ sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C d/ cos2 A + cos2 B + cos2 C = −2 cos A cos B cos C e/ tgA + tgB + tgC = tgA.tgB.tgC f/ cot gA.cot gB + cot gB.cot gC + cot gC.cot gA = 1 A B C A B C g/ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 A+B A−B a/ Ta coù : sin A + sin B + sin C = 2sin cos + sin ( A + B ) 2 2 A + B⎛ A−B A + B⎞ = 2 sin ⎜ cos + cos ⎟ 2 ⎝ 2 2 ⎠ C A B ⎛ A + B π C⎞ = 4 cos cos cos ⎜ vì = − ⎟ 2 2 2 ⎝ 2 2 2⎠ A+B A−B b/ Ta coù : cos A + cos B + cos C = 2 cos cos − cos ( A + B ) 2 2 A+B A−B ⎛ A+B ⎞ = 2 cos cos − ⎜ 2 cos2 − 1⎟ 2 2 ⎝ 2 ⎠ A+B⎡ A−B A + B⎤ = 2 cos ⎢ cos − cos +1 2 ⎣ 2 2 ⎥⎦ A+B A ⎛ B⎞ = −4 cos sin sin ⎜ − ⎟ + 1 2 2 ⎝ 2⎠ C A B = 4 sin sin sin + 1 2 2 2 c/ sin 2A sin 2B + sin 2C = 2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C = 2 sin C cos(A − B) + 2 sin C cos C = 2sin C = −4 sin Csin A sin( − B) = 4 sin C sin A sin B d/ cos2 A + cos2 B + cos2 C 1 = 1 + ( cos 2A + cos 2B ) + cos2 C 2 www.MATHđất nước hình chữ S.com MATHcả nước.COM = 1 + cos ( A + B ) cos ( A − B ) + cos2 C = 1 − cos C ⎡⎣cos ( A − B ) − cos C ⎤⎦ bởi vì ( cos ( A + B ) = − cos C ) = 1 − cos C ⎡⎣cos ( A − B ) + cos ( A + B ) ⎤⎦ = 1 − 2 cos C.cos A.cos B e/ Do a + b = π − C neân ta coù tg ( A + B ) = −tgC tgA + tgB ⇔ = −tgC 1 − tgAtgB ⇔ tgA + tgB = −tgC + tgAtgBtgC ⇔ tgA + tgB + tgC = tgAtgBtgC f/ Ta coù : cotg(A+B) = - cotgC 1 − tgAtgB ⇔ = − cot gC tgA + tgB cot gA cot gB − 1 ⇔ = − cot gC (nhaân töû vaø maãu đến cotgA.cotgB) cot gB + cot gA ⇔ cot gA cot gB − 1 = − cot gC cot gB − cot gA cot gC ⇔ cot gA cot gB + cot gB cot gC + cot gA cot gC = 1 A+B C g/ Ta coù : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = cot g C A B 2 1 − tg tg 2 2 A B cot g + cot g ⇔ 2 2 = cot g C (nhaân töû vaø maãu đến cotg A .cotg B ) A B 2 2 2 cot g .cot g − 1 2 2 A B A B C C ⇔ cot g + cot g = cot g cot g cot g − cot g 2 2 2 2 2 2 A B C A B C ⇔ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2Baøi đôi mươi : Cho ΔABC . Chöùng minh : cos2A + cos2B + cos 2C + 4cosAcosBcosC + 1 = 0 Ta coù : (cos2A + cos2B) + (cos2C + 1) = 2 cos (A + B)cos(A - B) + 2cos2C = - 2cosCcos(A - B) + 2cos2C = - 2cosC = - 4cosAcosBcosC Do ñoù : cos2A + cos2B + cos2C + 1 + 4cosAcosBcosC = 0 www.MATHnước ta.com MATHcả nước.COMBaøi 21 : Cho ΔABC . Chöùng minc : 3A 3B 3C cos3A + cos3B + cos3C = 1 - 4 sin sin sin 2 2 2 Ta coù : (cos3A + cos3B) + cos3C 3 3 3C = 2 cos (A + B) cos (A − B) + 1 − 2sin2 2 2 2 3 3 3C Maø : A + B = π − C neân ( A + B ) = π − 2 2 2 3 ⎛ 3π 3C ⎞ => cos ( A + B ) = cos ⎜ − ⎟ 2 ⎝ 2 2 ⎠ ⎛ π 3C ⎞ = − cos ⎜ − ⎟ ⎝2 2 ⎠ 3C = − sin 2 Do ñoù : cos3A + cos3B + cos3C 3C 3 ( A − B) 3C = −2 sin cos − 2sin 2 +1 2 2 2 3C ⎡ 3 ( A − B) 3C ⎤ = −2 sin ⎢cos + sin ⎥ +1 2 ⎣ 2 2 ⎦ 3C ⎡ 3 ( A − B) 3 ⎤ = −2 sin ⎢cos − cos ( A + B ) ⎥ + 1 2 ⎣ 2 2 ⎦ 3C 3A −3B = 4 sin sin sin( ) +1 2 2 2 3C 3A 3B = −4 sin sin sin +1 2 2 2Baøi 22 : A, B, C laø tía goùc cuûa moät tam giaùc. Chöùng minh : sin A + sin B − sin C A B C = tg tg cot g cos A + cos B − cos C + 1 2 2 2 A+B A−B C C 2 sin cos − 2 sin cos sin A + sin B − sin C 2 2 2 2 Ta coù : = cos A + cos B − cos C + 1 A+B A−B 2 C 2 cos cos + 2 sin 2 2 2 C⎡ A−B C⎤ A−B A+B 2 cos ⎢cos − sin ⎥ cos − cos 2⎣ 2 2⎦ C 2 2 = = cot g . C⎡ A−B C⎤ 2 cos A − B + cos A + B 2 sin ⎢cos + sin ⎥ 2⎣ 2 2⎦ 2 2 A ⎛ B⎞ −2 sin .sin ⎜ − ⎟ C 2 ⎝ 2⎠ = cot g . 2 A B 2 cos .cos 2 2 www.MATHnước ta.com MATHtoàn nước.COM C A B = cot g .tg .tg 2 2 2Baøi 23 : Cho ΔABC . Chöùng minch : A B C B C A C A Bsin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C A B B C A C= sin sin sin + tg tg + tg tg + tg tg ( *) 2 2 2 2 2 2 2 2 2 A+B π C ⎛ A B⎞ C Ta coù : = − vaäy tg ⎜ + ⎟ = cot g 2 2 2 ⎝ 2 2⎠ 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 A C B C A B ⇔ tg tg + tg tg + tg tg = 1 (1) 2 2 2 2 2 2 A B C B C A C A B Do ñoù : (*) Ù sin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C = sin sin sin + 1 (vày (1)) 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin cos + cos sin =1 2 2 2 2 A+B+C π ⇔ sin = 1 ⇔ sin = 1 ( hieån nhieân ñuùng) 2 2 A B C 3 + cos A + cos B + cos CBaøi 24 : Chöùng minh : tg + tg + tg = ( *) 2 2 2 sin A + sin B + sin C Ta coù : A+B A−B ⎡ C⎤ cos A + cos B + cos C + 3 = 2 cos cos + ⎢1 − 2 sin 2 ⎥ + 3 2 2 ⎣ 2⎦ C A−B C = 2sin cos + 4 − 2sin2 2 2 2 C⎡ A−B C⎤ = 2 sin ⎢cos − sin ⎥ + 4 2⎣ 2 2⎦ C⎡ A−B A + B⎤ = 2 sin ⎢cos − cos +4 2⎣ 2 2 ⎥⎦ C A B = 4 sin sin .sin + 4 (1) 2 2 2 www.MATHđất nước hình chữ S.com MATHtoàn quốc.COM A+B A−B sin A + sin B + sin C = 2sin cos + sin C 2 2 C A−B C C = 2 cos cos + 2sin cos 2 2 2 2 C⎡ A−B A + B⎤ = 2 cos ⎢ cos + cos 2⎣ 2 2 ⎥⎦ C A B = 4 cos cos cos (2) 2 2 2 Töø (1) vaø (2) ta coù : A B C A B C sin sin sin sin sin sin + 1 (*) ⇔ 2 + 2 + 2 = 2 2 2 A B C A B C cos cos cos cos cos cos 2 2 2 2 2 2 A⎡ B C⎤ B⎡ A C⎤ C⎡ A B⎤ ⇔ sin ⎢cos cos ⎥ + sin ⎢cos cos ⎥ + sin ⎢cos cos ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ A B C = sin sin sin + 1 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin .cos + cos sin =1 2 2 2 2 ⎡A + B + C⎤ ⇔ sin ⎢ ⎥⎦ = 1 ⎣ 2 π ⇔ sin = 1 ( hieån nhieân ñuùng) 2 A B C sin sin sinBaøi 25 : Cho ΔABC . Chöùng minh: 2 + 2 + 2 =2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 Caùch 1 : A B A A B B sin sin sin cos + sin cos Ta coù : 2 + 2 = 2 2 2 2 B C C A A B C cos cos cos cos cos cos cos 2 2 2 2 2 2 2 A+B A−B sin cos 1 sin A + sin B 2 2 = = 2 cos A cos B cos C A cos cos cos B C 2 2 2 2 2 2 C A−B ⎛ A − B⎞ cos .cos cos ⎜ ⎟ 2 2 ⎝ 2 ⎠ = = A B C A B cos .cos .cos cos cos 2 2 2 2 2 www.MATHnước ta.com MATHcả nước.COM ⎛ A − B⎞ C A−B A+B cos ⎜ ⎟ sin cos + cos Do ñoù : Veá traùi = ⎝ 2 ⎠+ 2 = 2 2 A B A B A B cos cos cos cos cos cos 2 2 2 2 2 2 A B 2 cos cos = 2 2 =2 A B cos cos 2 2 Caùch 2 : B+C A+C A+B cos cos cos Ta coù veá traùi = 2 + 2 + 2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 B C B C A C A C cos cos − sin sin cos cos − sin sin = 2 2 2 2 + 2 2 2 2 B C C A cos cos cos cos 2 2 2 2 A B A B cos cos − sin sin + 2 2 2 2 A B cos cos 2 2 ⎡ B C A C A B⎤ = 3 − ⎢ tg tg + tg tg + tg tg ⎥ ⎣ 2 2 2 2 2 2⎦ A B B C A B Maø : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 (ñaõ chöùng minh taïi baøi 10 ) Do ñoù : Veá traùi = 3 – 1 = 2 A B CBaøi 26 : Cho ΔABC . Coù cot g , cot g , cot g theo töù töï taïo caáp soá coäng. 2 2 2 A C Chöùng minh cot g .cot g = 3 2 2 A B C Ta coù : cot g , cot g , cot g laø caáp soá coäng 2 2 2 A C B ⇔ cot g + cot g = 2 cot g 2 2 2 A+C B sin 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2 www.MATHtoàn quốc.com MATHđất nước hình chữ S.COM B B cos 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2 1 2 B ⇔ = (do 0 0 ) A C A+C 2 sin sin cos 2 2 2 A C A C cos cos − sin sin ⇔ 2 2 2 2 = 2 ⇔ cot g A cot g C = 3 A C 2 2 sin .sin 2 2Baøi 27 : Cho ΔABC . Chöùng minh : 1 1 1 1⎡ A B C A B C⎤ + + = ⎢ tg + tg + tg + cot g + cot g + cot g ⎥ sin A sin B sin C 2 ⎣ 2 2 2 2 2 2⎦ A B C A B C Ta coù : cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 (Xem chöùng minch baøi 19g ) sin α cos α 2 Maët khaùc : tgα + cot gα = + = cos α sin α sin 2α 1⎡ A B C A B C⎤ Do ñoù : ⎢ tg + tg + tg + cotg + cotg + cotg ⎥ 2⎣ 2 2 2 2 2 2⎦ 1⎡ A B C⎤ 1 ⎡ A B C⎤ = ⎢ tg + tg + tg ⎥ + ⎢ cotg + cotg + cotg ⎥ 2⎣ 2 2 2⎦ 2 ⎣ 2 2 2⎦ 1⎡ A A⎤ 1 ⎡ B B⎤ 1 ⎡ C C⎤ = ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 1 1 1 = + + sin A sin B sin C BAØI TAÄP1. Chöùng minc : π 2π 1 a/ cos − cos = 5 5 2 cos15 + sin15 o o b/ = 3 cos15o − sin15o 2π 4π 6π 1 c/ cos + cos + cos =− 7 7 7 2 d/ sin 2x sin 6x + cos 2x.cos 6x = cos3 4x 3 3 e/ tg20o.tg40o.tg60o.tg80o = 3 π 2π 5π π 8 3 π f/ tg + tg + tg + tg = cos 6 9 18 3 3 9 π 2π 3π 4π 5π 6π 7π 1 g/ cos .cos .cos .cos .cos .cos .cos = 15 15 15 15 15 15 15 27 www.MATHViệt Nam.com